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Abstract 

Low-intensity light therapy (LILT) is showing promise in the treatment of a wide variety of 

medical conditions. Concurrently, our knowledge of LILT mechanisms continues to expand. We 

are now aware of LILT's potential to induce cellular effects through, for example, accelerated 

ATP production and the mitigation of oxidative stress. In clinical use, however, it is often 

difficult to predict patient response to LILT. It appears that cellular reduction/oxidation (redox) 

state may play a central role in determining sensitivity to LILT and may help explain variability 

in patient responsiveness. In LILT, conditions associated with elevated reactive oxygen species 

(ROS) production, e.g. diabetic hyperglycemia, demonstrate increased sensitivity to LILT. 

Consequently, assessment of tissue redox conditions in vivo may prove helpful in identifying 
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responsive tissues. A noninvasive redox measure may be useful in advancing investigation in 

LILT and may one day be helpful in better identifying responsive patients. The detection of 

biophotons, the production of which is associated with cellular redox state and the generation of 

ROS, represents just such an opportunity. In this review, we will present the case for pursuing 

further investigation into the potential clinical partnership between biophoton detection and 

LILT. 
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Introduction 

Low-intensity light therapy (LILT) is showing promise in the treatment of a wide variety of 

conditions, including the treatment of delayed wound healing, arthritic pain, and acute stroke.
1–4

 

Our understanding of LILT mechanisms continues to progress, and we now know that LILT has 

the potential to accelerate ATP production and mitigate oxidative stress, which derives from 

excessive production of reactive oxygen species (ROS) or a lack of antioxidant activity.
5–7

 

Through red- and near infrared (NIR)-induced mitochondrial stimulation, these mechanisms 

participate in downstream immunomodulation in cells and tissue.
8–11

 Coupled with reports of 

clinical safety and efficacy, this increased understanding continues to generate enthusiasm for 

LILT. As the field progresses, however, we must recognize that currently, in some individuals, it 

is difficult to predict clinical response. This is further complicated by the diversity of protocols 

and methodologies that have been utilized and that have reported mixed results in the treatment 

of a variety of conditions, e.g. osteoarthritis, myofascial pain, and carpal tunnel syndrome.
3,12–15

 

Nonetheless, consistent investigation has demonstrated that red and NIR low-intensity 

phototherapy can influence cells and tissues in a wavelength-specific, intensity-specific, energy 

dose-specific, and pulse frequency-specific manner.
10,11,16–19

 These effects are generally oxygen 

dependent and involve the generation of ROS.
8,20,21

 

As we clarify our understanding of relevant molecular mechanisms, it appears that cellular 

reduction/oxidation (redox) state may play a central role in determining sensitivity to LILT and 

may help to explain variability in patient responsiveness.
22–24

 Conditions associated with pro-

oxidant states, i.e. states associated with elevated ROS production, demonstrate increased 

sensitivity to LILT.
25

 Cellular sensitivity to red and infrared light, probably at the level of 

cytochrome C oxidase, is influenced by cellular redox state.
22,23,26

 Cellular growth phase, which 

may also correspond to cellular redox state, appears be another determinant of this sensitivity. In 

vitro and in vivo, the effectiveness of LILT varies with cellular growth phase.
2,6

 Proliferating 

cells are in many cases more sensitive. HeLa cells, fibroblasts, and epithelial cells all 

demonstrate sensitivity to LILT, which is more pronounced during the proliferative cellular 

growth phase, and in each case, this proliferative phase is associated with elevated ROS 

production.
24,27–30

 In vivo, such effects are further affected by the pathophysiologic state of the 

treated tissue, which may also correspond with cellular redox state.
31,32

 Diabetic wounds, which 

are characterized by delayed wound healing, are an interesting case. For example, proliferating 

cells at the diabetic wound site are more responsive to LILT than non-proliferating cells.
33,34

 

Furthermore, compared to normally healing wounds, diabetic wounds are more responsive to 

LILT.
25

 This difference is significant. In their study of LILT effects on burn healing, Al-Watban 

and Andres reported that light-emitting diode (LED) therapy at doses of 5, 10, 20, and 30 J/cm
2
, 
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respectively, influenced healing by 6.85%, 4.93%, 24.18%, and 25.42% in non-diabetic rats and 

73.87%, 76.77%, 60.92%, and 48.77% in diabetic rats, relative to their controls, respectively.
34

 

This increased responsiveness may be the result of elevated ROS production known to be 

associated with diabetic hyperglycemia, although this proposed mechanism has not yet been 

confirmed.
35,36

 

Curiously, LILT has been associated with further transient increases in cellular ROS 

production.
20

 As aforementioned, we theorize that conditions characterized by 

pathophysiological oxidative stress may demonstrate increased cellular sensitivity to LILT. The 

use of LILT in the treatment of cardiac and cerebral ischemia, both characterized by oxidative 

stress, provides some insight into the beneficial effects of LILT in settings of elevated ROS 

production.
4,37,38

 In such conditions, the use of LILT might appear counterproductive, as it is 

associated with further increases in ROS production. However, animal studies investigating the 

use of LILT in the treatment of experimentally induced cardiac and cerebral ischemia indicate 

otherwise.
4,37,38

 In this research, LILT results in subsequent improvements in tissue survival and 

function as compared to control conditions. LILT-induced improvements in these conditions 

have been attributed by Oron et al. to rapid elevation of ATP content, increased angiogenesis, 

and furthermore, to increased anti-apoptotic activity, heat shock proteins, and total antioxidants.
5
 

These improvements draw a comparison with more well-established protective cellular 

mechanisms, which have also been studied in the setting of cardiac and cerebral ischemia, 

namely, those involved in the highly conserved cellular stress response induced by heat shock, 

pre- and post-ischemic conditioning, and oxidative stress.
39–46

 This stress response is 

characterized by increases in anti-apoptotic activity, heat shock proteins, and total antioxidants.
46

 

In the treatment of cardiac ischemia, LILT might best be compared to the experimental technique 

of post-ischemic conditioning, in which it has been shown that ischemic myocardial injury can 

be reduced by cycles of re-occlusion during myocardial reperfusion.
46

 In both cases, the 

subsequent mitigation of oxidative stress is in part initiated by the further generation of ROS. 

Such increases in ROS production likely participate in intracellular signaling by acting on a 

number of redox-sensitive proteins, including redox-sensitive transcription factors.
24,46

 Prior 

investigations show that LILT can alter the expression of a variety of genes, including genes 

known to directly or indirectly play roles in the enhancement of anti-oxidation.
28

 

As cellular conditions involving elevated ROS production appear to be associated with increased 

LILT sensitivity, assessment of tissue redox conditions in vivo may prove helpful in identifying 

responsive tissues. A noninvasive redox measure may be useful in advancing investigation in 

LILT and may one day be helpful in identifying responsive patients. The detection of 

biophotons, whose production is also associated with the production of ROS and the cellular 

redox state, represents just such an opportunity. Biophoton detection and analysis are currently 

being utilized to noninvasively measure tissue redox conditions in vivo.
47–49

 In this review and 

position paper, we will introduce relevant biophoton research focusing on the relationship 

between biophoton emission and conditions of oxidative stress. We also include some discussion 

of the initial context of biophoton investigation. Moreover, we will present the case for further 

investigation into the potential clinical partnership between biophoton detection and LILT. 
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Biophoton Detection 

Over the last few decades, advances in photodetection have confirmed that many, if not all, 

living systems emit very low levels of visible and near visible (ultraviolet [UV] and near infrared 

[NIR]) photons.
50,51

 These photobiological emissions have been described as spontaneous 

ultraweak chemiluminescence, spontaneous photon emission (SPE), and, more succinctly, as 

biophoton emission. 

Visible and NIR spectrum biophotons, linked to electron-excited states associated with the 

generation of ROS, are most relevant to LILT and to this discussion. In contrast, the origins of 

UV biophotons are less clear, and consequently, less clinically useful at this time. UV 

biophotons are theorized to be derived from DNA conformational changes, amplified radical 

recombination reactions, delayed branch chain reactions in amino acids, and/or direct 

emitters.
52,53

 Future research might reveal a broader role for UV biophotons in cell biology. 

Biophoton emission is biochemically distinct from the more well-known phenomena of 

bioluminescence. Bioluminescence, as in fireflies, is typically visible and involves specialized 

enzymatic mechanisms, i.e. luceferin–luciferase, to provide luminescence. In contrast, biophoton 

emission is much weaker and is generally reported to be less than 1000 photons per second per 

cm
2
, several orders of magnitude below the accepted visible level.

54
 

Biophoton emission is closely correlated with the production of ROS and the oxidative status of 

living systems. Recent advances in photodetection have made it possible to analyze biophoton 

emission. This methodology detects and analyzes biophotons produced by metabolic reactions in 

living cells. Since the early 1980s, scientists have recorded biophoton emission from mammalian 

liver, heart, lung, nerve, and muscle tissue.
55–62

 This has been accomplished with photomultiplier 

tube technology, i.e. photomultipliers. These photomultipliers are extremely sensitive detectors 

of light in the UV, visible, and NIR ranges of the electromagnetic spectrum. These detectors 

multiply the signal produced by incident light by as much as 100 million times, enabling single 

photons to be detected individually when the incident flux of light is very low.
63

 In collecting 

this data, it must be emphasized that the number of photons registered depends on a variety of 

instrumental characteristics, including the distance between the sample and the photomultiplier 

and, moreover, the spectral sensitivity of the photomultiplier. 

Photomultipliers have been used to further analyze biophoton emission from total organ brain 

and liver homogenates in cell fractionation studies.
64

 In these analyses, mitochondria and 

submitochondrial particles have been shown to be predominant sources of cellular biophoton 

emission.
65–67

 Furthermore, in fractionated hepatic cell homogenates, microsomes (vesicular 

fragments of the endoplasmic reticulum formed after the disruption and centrifugation of cells) 

have also been shown to be predominant sources of biophoton emission.
66,68–72

 In hepatic cells, 

microsomes contain the cytochrome P450 enzymes, involved in oxidative metabolism. In 

mitochondria and microsomes, biophoton emission requires a membrane-bound electron transfer 

system and can be optimized in the presence of oxygen. In order to identify more precisely the 

molecular source of biophotons, spectral analysis has been applied extensively to biophoton 

emission in liver, brain, lung, and heart cells and hepatic microsomal fractions.
61,64,65,68,70

 Various 

emission bands in the range of 400–700 nm have been found, and the data suggest that singlet 
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molecular oxygen, formed during free-radical processes accompanying lipid peroxidation, may 

be a major source of biophoton emission. Interestingly, the ROS singlet oxygen is also thought to 

act as a signaling molecule in the cellular response to LILT photostimulation.
73

 For a more 

comprehensive account of lipid peroxidation, including the oxidizing species triggering and 

participating in this process, the reader is referred to Boveris et al. and Halliwell and 

Gutteridge.
59,74

 

As biophoton emission has been related to the utilization of oxygen, the generation of ROS, and 

the production of electronically excited states in biological systems, it was suggested that 

biophoton detection could be used as a tool for the investigation of radical reactions and 

oxidative stress. Many biochemical techniques, which focus primarily on the measurement of 

biological lipid peroxidation, are now available to assess oxidative stress in living systems.
75

 

However, many of these techniques are invasive and inappropriate for clinical application. In 

contrast, biophoton emission provides, on a non-invasive basis, a signal of oxidative metabolism 

and ROS steady-state concentration that is readily and continuously detectable. It is possible to 

continuously monitor the metabolism of organs in vivo with biophoton detection techniques. 

Thus, in the assessment of in vivo redox status, biophoton detection may become more useful 

than other assays, including indirect assays of lipid peroxidation, such as glutathione release, 

electron-spin-resonance techniques, or assays assessing the evolution of hydrocarbons or 

malondialdehyde accumulation.
76–83

 

Furthermore, as biophoton detection can be developed for imaging and spatiotemporal analysis, 

it offers additional perspectives. Two-dimensional biophoton imaging of a rat brain in vivo was 

achieved in 1999.
84

 This was done using a highly sensitive, ultra-low-noise charged-coupled 

device (CCD) camera system. Kobayashi et al. demonstrated that spatiotemporal biophoton 

emission in the rat brain is correlated with cerebral energy metabolism and oxidative stress.
84

 

Biophoton emission intensity in the exposed rat brain was associated with cerebral blood flow 

and ROS production in vivo. Furthermore, work with subsequently sliced rat brains suggested 

that observed biophoton emission originated from the energy metabolism of the inner 

mitochondrial respiratory chain through the production of ROS. At that time, authors remarked 

that the imaging of biophoton emission from a brain constituted a novel method with the 

potential to extract pathophysiological information associated with neural metabolism and 

oxidative dysfunction. Kobayashi et al. credit Boveris and Cadenas et al. with suggesting the 

potential usefulness of biophoton detection for noninvasive monitoring of oxidative metabolism 

and oxidative damage in living tissue.
85,86

 

Biophoton detection techniques have also been used to record ultraweak photon emission from 

superficially transplanted tumors.
87–89

 Recently, a CCD camera system was used to record two-

dimensional biophoton images from tumors transplanted in mice.
90

 In these images, recorded 

biophoton emission distinguishes transplanted tumors from surrounding tissue. This distinction 

may be due to increased ROS production (including singlet oxygen, superoxide radicals, 

hydrogen peroxide, and hydroxyl radicals) associated with carcinogenesis and tumor 

promotion.
91

 At this point, this recording technology is unable to demonstrate discrete tumor 

boundaries as biophoton emission spreads from areas of higher emission in this two-dimensional 

data. Additional studies will be required to further establish the accuracy of localizing biophoton 

tissue sources. This tumor research also initiates needed discussion addressing biophoton tissue 
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penetration and the depth from which biophotons can be detected. More research needs to be 

done in this area in order to assess the transparency of living tissue with regard to ultraweak 

biophoton intensities. 
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Biophotons and LILT 

Visible and NIR biophotons and red and NIR LILT share some interesting parallels. Both 

involve visible and NIR photons, the mitochondrial electron transport chain, and the generation 

of ROS, in particular, singlet oxygen. As previously reviewed, LILT can stimulate cellular 

metabolism, presumably through photostimulation of elements of the mitochondrial electron 

transport chain.
73

 Furthermore, LILT photostimulation is thought to result in electron-excited 

states and the increased generation of ROS.
20

 

Mitochondrial ROS generation is likely one of the primary mechanisms involved in LILT. As 

mentioned, Pal et al. demonstrated that, in human fibroblasts, low-intensity helium–neon laser 

irradiation-induced proliferation was associated with real time transient increases in ROS 

production.
20

 Antioxidant mechanisms have been shown to inhibit such LILT effects, further 

implicating the role of ROS in LILT signal transduction.
23

 

The mitochondrial electron transport chain is a major source of visible and infrared biophotons. 

In fact, the metabolic processes involved in producing electronically excited states in biophoton-

producing molecules are generally derived from oxidative metabolism accompanied by the 

production of ROS.
48,92

 Boveris et al. report that “hydroperoxide-supplemented cytochrome c 

provides a chemiluminescent model system suitable for the elucidation of some of the molecular 

mechanisms responsible for light emission”.
85

 Biophoton emission increases with increased 

generation of ROS by the mitochondrial electron transport chain. 

Some researchers report that LILT and biophotons share another parallel. Like LILT, biophotons 

may influence cells through some form of photobiostimulation.
50,93

 At first glance, this is an 

appealing idea yet very difficult to conceptualize, as the two phenomena differ vastly in their 

functional intensities. Low-intensity lasers and LEDs are effective at an intensity window whose 

minimum is several orders of magnitude greater than the intensity of recorded biophoton 

emission. In our current understanding, this makes it difficult to link biophoton-induced effects 

to LILT mechanisms. Nonetheless, this concept is derived from early biophoton investigations, 

which explored the possibility of endogenous intercellular photocommunication. This concept 

was born in the 1920s when A.G. Gurwitsch first described what he termed as “mitogenic 

radiation”.
94

 Gurwitsch reported experimental evidence that demonstrated that dividing yeast 

cells (Saccharomyces cerevisiae) emit UV light and can induce mitosis in a chemically separated 

population of S. cerevisiae cells. This was the first indication that an optical (physical) 

interaction might occur between cells. For decades, a number of researchers attempted to 

replicate this work and failed. 

Despite the lack of convincing evidence, several laboratories in different countries continued to 

pursue systematic investigation into this matter, using both biological techniques and, as 
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technology permitted, physical methods of photodetection.
95–107

 As his controversial research 

inspired this more thorough investigation, Gurwitsch's initial work is regarded by many as the 

foundation for research into the role of biophotons in intercellular communication. 

Subsequent technological advances in photodetection have now been applied in studies of 

biophoton-mediated intercellular communication. In 1991, Grasso et al. revived “mitogenic 

radiation” by demonstrating that S. cerevisiae biophoton emission appears to be capable of 

inducing higher rates of gemmae formation during S. cerevisiae self-irradiation 

experiments.
108,109

 Research into optically mediated intercellular communication has been 

conducted primarily with microbes and has been reviewed extensively by Trushin.
93,110

 

Others have explored the potential role of biophotons in intercellular interactions in neutrophils, 

which are incidentally also sensitive to LILT.
94,111

 Low-intensity lasers can be used to induce the 

well-described oxidative burst in neutrophils, which occurs in vivo during phagocytosis.
112

 

During neutrophil phagocytosis and oxidative burst, the generation of ROS, involving excited 

singlet oxygen and excited carbonyl groups, leads to biophoton emission.
112,113

 This emission has 

been investigated for its potential role in optically mediated neutrophil interactions.
111

 Although 

beyond the scope of this discussion, some biophysicists theorize that such communication might 

involve complex biophysical mechanisms beyond those currently established in 

photobiology.
50,114

 At this point, the theory that biophotons, through some form of 

photobiostimulation, may influence chemical reactions and cellular behavior needs further 

verification. 
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Human Biophoton Detection 

Over the last 10 years, human biophoton emission has also been detected and analyzed. Human 

biophoton emissions demonstrate spatiotemporal differences and are linked to ROS production 

and oxidative stress.
115–118

 Cohen and Popp have conducted long-term systematic research of 

biophoton emission from the hands and forehead in vivo using a moveable, hanging 

photomultiplier.
47,119

 This work includes investigations into the effects of disease states on 

biophoton emission.
115,120

 This initial work provided the basis for a larger systematic study 

initiated in 2003. This research has yielded information on: (a) procedures for reliable 

measurements and spectral analysis; (b) the anatomic intensity of emission; (c) associations with 

biological rhythms; (d) physical and psychological influences on emission; and (e) emission in 

health and disease. Systematic, multisite recordings utilizing the moveable photomultiplier 

system with healthy subjects present evidence for a “common” human anatomic intensity 

emission pattern (Fig. 1).
121–123

 It must be noted that the mean (±SEM) background noise was 6.0

± 0.4 cps (photon count rate per second). This suggests that, under the given experimental 

conditions, the basic spontaneous emission of the body lies in the range of 15 cps (less than 1

cps/cm
2
 skin surface). The reliability of assessing anatomical differences at this scale is closely 

related to the recording procedure. Thus, an adequate recording duration necessitates both the 

registration of as many anatomical locations as possible, within a reasonable time period, and 

high accuracy in order to reliably distinguish between the emission intensities of different 

locations. These two variables, however, act in opposite manner. Using statistical analyses, it has 
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been concluded that recording times of 120 s, with emission counts grouped by seconds, give 

reliable values that can be used for these analyses. Differences greater than 1.1 cps between two 

locations are found to be statistically significant (p < 0.01).
123

 

 
FIG. 1. 

Human biophoton emission measured in a single subject. Spectral distribution of spontaneous 

emission of different body sites of subject A: right anterior upper leg, forehead, left hand, and 

right hand (Reprinted with permission from Forschende Komplementarmedizin ... 

Despite this common anatomic pattern, absolute intensities of emission have been shown to vary 

widely between subjects, in some cases by up to a factor of 5. Analysis of biophoton emission 

from the hands suggest that emitted photons are generated from both the skin surface and interior 

sources. Spectral analysis documents major spontaneous emission at 470–570 nm, indicating a 

specific electron-excited state.
123

 Excited carbonyl groups, perhaps generated by reactions 

between excited singlet oxygen molecules and unsaturated lipids, may be responsible for this 

emission. Furthermore, it has also been shown that biophoton emission is altered in the presence 

of antioxidants.
47

 Other data has confirmed that human biophoton emission is oxygen-dependent 

and reduced in hypoxic conditions.
123

 

Go to: 

A Potential Clinical Partnership 

As most clearly described by Kobayashi et al., (visible and infrared) biophoton emission reflects 

the pathophysiological state with respect to ATP production and susceptibility to oxidative 

stress, which derives from excessive production of ROS or a lack of antioxidant activity. 
48

 

Biophotons are thus a window into the redox state of the mitochondrial electron transport chain. 

Biophoton emission from the mitochondria may similarly indicate localized redox conditions 

relevant to the mitochondrial electron transport chain and its light sensitive elements. Thus, 

biophoton emission seems uniquely suited to noninvasively characterize redox conditions related 

to low-intensity light sensitivity at the level of the mitochondrial electron transport chain. 

The potential for clinically relevant in vivo human biophoton detection now exists. Although 

individual and anatomic variation need to be further clarified, skin-surface measurement of 

biophotons can be used to assess localized oxidative stress in superficial tissues. This 

information may be clinically useful in LILT. Biophoton emission might indicate mitochondrial 

redox conditions and thus potential sensitivity to LILT. Biophoton detection and analysis should 

therefore be investigated in connection with LILT clinical response. Investigating the 

relationship between biophoton emission, LILT, and wound healing (given the superficial source 

of biophotons) seems a reasonable starting point. In order to test the relationship between 

biophoton emission, redox status, LILT sensitivity, and clinical response, we suggest a study of 

LILT in wound healing, which would include interval assessment of biochemical redox markers 
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and biophoton emission. Perhaps, biophoton measurement will be helpful in advancing LILT, 

and conversely, perhaps LILT will help us to further explore the now detectable world of 

biophotons. 

Go to: 
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